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ABSTRACT

A boundary integral formulation for quasistatic, TE,
TM and hybrid wave analysis of open or shielded wave-
guides with arbitrary multiregion crossection is presented.
A special form of boundary integral equation is derived
first to make possible the numerical treatment of corner-
ed geometries. Subsequently operator equations including
source terms are given for analysis of arbitrary 2-D
structures. The numerical method is described shortly,
including as example the quasistatic analysis of coplanar
waveguide with non-rectangular conductor shape.

INTRODUCTION

A variety of complicated crossections is exhibited by
active and passive MMIC waveguiding structures which on
principle or by technology are neither planar nor of
rectangular geometry, therefore excluding some standard
methods for their analysis. To deal with arbitrary multi-
region crossections the flexibility of the finite element
method (FEM), the finite difference method (FDM) or the
boundary integral equation method (BIEM) is required.
While the former have been applied to waveguides by
different workers (1), application of the BIEM has only
been reported for quasistatic problems {2) and no BIE
formulation for the analysis of hybrid wave propagation
has yet been given.

With the BIEM (3.,4) a partial differential equation
for an unknown function defined over some domain is
transformed into an integral equation for its boundary
values. The principal advantage of this approach is the
reduction of problem dimensionality by one which directly
translates into reduced matrix size and facilitates data
preparation. As opposed to the domain methods unbounded
regions present no difficulties to the BIEM hence no
artificial shielding is required. For multiregion problems
interface continuity conditions are automatically satisfied
by stating the BIE for each subdomain in terms of those
field components that are continous over interfaces. As
solution of the BIE system the interface values of these

CH2725-0/89/0000-0711$01.00 © 1989 IEEE

field components are obtained as the primary result.
Integral quantities and field components at interior points
are easily computed from them by one-dimensional inte-
gration. Due to the one-dimensionality of the transformed
problem a very flexible numerical implementation is
possible, including for example automatic generation of
the asymptotically exact edgeterms for metallic and
dielectric corners, such permitting to obtain the precise
fields in the vincinity of corners while further reducing
the number of unknowns that are needed. Curved bounda-
ries do not need polygonal approximation but can be
entered in their exact functional form.

The method has a wide range of applications. For
static analysis anisotropic media can be handled by simply
changing the fundamental solution subroutine, also non-
linear conductivity may be specified. The hybrid wave
formulation allows for regions of finite conductivity so as
to model losses and slow wave effect. We have included
source terms for both the static and the full wave BIE
system thus aiming at future extension of the model to
the analysis of active structures.

BOUNDARY INTEGRAL FORMULATION

This section first introduces a modified implicit form
of BIE on which the present method is based. This form
is equally applicable to smooth and cornered boundaries
while the standard form fails in the latter case, due to
loss of uniform convergence of some integral operator.

To start with, consider an open, unbounded or boun-
ded domain Q CIR? for the moment assume its boundary
dQ to be smooth and let 2 denote its outer normal. In Q
a solution is sought for the problem

Lu:= Au+h®u = -b (1)

with h%€C and u subject to some boundary condition
B(u, ngradu)=0 on Q. The space of admissible functions
u is restricted by requiring that u be twice continously
differentiable in the open domain Q and Hglder continous
on its closure O, i.e.

fu(p) - ulg)l = Mlip- gl (2)
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with M,7€R, for all p,g €0), the necessity of the latter
restriction becoming obvious below. For brevity we intro-
duce the symbol

v:oQ~C, g~ n(g)grad ulq)

for the normal derivative of u on oQ. Translating the
boundary value problem into a boundary integral formula-
tion employs a fundamental solution

glp.-):QN\p} -~ ¢, (p.g) - 2lp.q)

of eq.(1) which for any peQ it satisfies

L g = -Alp) sfllp-ql).

A(p) here denotes the plane angle that opens from p into
Q and 6‘2 is Diracs distribution in R®. The fundamental
solution is not unique. It depends on the parameter A and
in -addition may have the symmetries of the problem built
into it, but always can be expressed as sum of its singu-~
lar part

3)

and a function -4 which is defined and continuously diffe~

8,(p.q) = -1n(lp -ql)

rentiable on an open domain UDQ. Consequently its
normal derivative on Q)
k(p:r) : 90\Mp} = €, (p.g) = n(qg)grad_e(p.q)
may be expressed as sum of
(p- q)n(q)
k({p.g)= —"—3~ 4
S i Pl @)

and a continous function kl. Application of Greens second
theorem to the functions v and g with respect to the
punctured domain Q\{p} renders the BIE

AP)u(p) + [ k(p.g) u(a)ds(a) - [elp.q) v(g)ds(a)

2O\{p} 2O\{p}

(s)
= [Jelp.g) blq) &%

o\{p}

in its standard explicit form. This form is well suited to
regions with a smooth boundary 0Q where the appearing
boundary integrals converge uniformly. To see this only
the singular parts &, ko of the kernels need considerati-
on. The assumption of a smooth boundary says that for
any two points p,g€dQ and some C’EIR+ the inequality

I(p- g)alq)l = Clip- ql? (6)

holds as g —p. Hence we have
(M)

and the first boundary integral on the left hand side of
(5) is regular in this case. The second integral is weakly
singular but uniform convergence is assured by Lebesgue’s
dominated convergence theorem as

Ik, (pg) u(g)l < € sup(lu(g))
geaQ
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le,(p.g) v(g)l < In(lp~gl)| Mip-ql™

because of (2). If now the assumption of 90 beeing
smooth is dropped and singular boundary points are ad-
mitted as depicted in Fig.l, obviously inequalities (6) and
{(7) no longer hold and uniform convergence of the first
boundary integral in eq.(S) is lost. Discretization of the
BIE by projecting it onto a set of test-functions would
however require that this integral again appeared under
an integral. As both integrals are to be evaluated nume-
rically, we conclude that eq.(5) is not applicable in the
presence of singular boundary points. To overcome this
problem eq.(5) is replaced by

[ & (0.0) (u(@)- u(p))ds(a) + [k (pg) ulg)ds(q)

20\{p} 20\{p}

- [elpa)v(g)asla) = [[elp.q) blq) .

20\{p} O\{p}

(8)

the implicit form of the BIE. For smooth boundaries
equations (5) and (8) are equivalent. The implicit form
however does not suffer from loss of uniform convergence
of the boundary integrals in the presence of singular
boundary points. This follows from the dominated conver-
gence theorem again, for

|, (p.q) (u(@)- u(p))] <

1
7 Mle- ql®

fp-qll

as as consequence of inequality (2).

q-p
Eq.(8) is the basis of the present method. Before
proceeding to the applications we rewrite it in operator
notation as

current test boundary I, =Ty
with 6 test functions

:r‘

rs

curreat source boundary
and 5 basis functions

Fig.l: A typical domain ©Q of a general 2-D structure
with non-smooth boundary oQ made up of the
smooth curves T ‘...1"4Which join in singular boundary
points. A local right handed system of unit vectors
(n.t,a) is attached to each boundary point. Basis and
test functions are shown for two boundaries, the
current source and test boundary (see text).



Klullp) - GIvi{p) = QIvl(p), (9)

where the definition of the operators should be obvious by
comparison, and shortly indicate how discretization of the
operators is performed. Pairs of curves FT,I‘SE {I‘i}Cc)Q
are selected in succession to serve as test—- and source-
boundary respectively (Fig.l). Having chosen suitable sets
of test functions {fm}:I‘T*IR and  basis functions
{un},{vn}:l;—>lR partial discrete operators of the form

(Gmn)rs = ( ffm(t) [ elp(t).a(s) v (s) ds dt )
T

T el

can be computed and finally be assembled to the global
matrix equation. An iterative numerical integration sche-
me is used to compute the operators up to a predefined
relative precision. The important questions of how to
select regular and singular basis functions (splines and
inverse fractional power) for a given structure and how
to regularize the quasisingular integrals can not be de-
scribed in detail here but some information is interspersed
below.

STATIC FIELDS

The static field problem was tackled first to work
out the details of the method and also for its practical
relevance, as many typical transmission line structures
encountered in MMICs have transverse dimensions small
enough to justify the quasistatic approximation. Solving
for the electrostatic potential is a straightforward appli-
cation of eq.(9) with h* set to zero. Each homogenous
subregion contributes a BIE

(10)

where ¢ denotes electrostatic potential and a-D the nor-
of electric displacement. The domain
integral operator Q only appears when domain charge
density p is present. As ¢ and n-D will be known on some
boundaries and unknown on others eq.(10) must be re-
arranged correspondingly. For simplicity we indicate this
here by writing

(K[¢]+ 1;G[zz-D])

Klp] + i—G[zrD] = Lalel

mal component

known

1
. = LQIo1-(KI¢l + 2 GLaD])

known

After computing the partial operators for all combinations
of test and source boundaries in each domain, assembly of
the global operator equation merely requires the block
matrices to be put in their right places and their sign
adjusted according to wether the source boundary normal
points out of or into the current domain. Note that inter-
face continuity conditions are automatically fulfilled by
selecting ¢ and »-D as the boundary value functions to
work with.

As demonstration a coplanar waveguide with non-
rectangular conductor shape as due to underetching
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(Fig.2a) and electrolytical growth (Fig.2b} respectively is
analyzed. It was found that the technological impact on
conductor shape is by no means negligible in MMIC ap-
plications (Fig.3). Surface charge density and interface
flux (Fig.4) are computed to high precision using only few
basis functions because edgeterms with asymptotically
correct order of singularity are included as was indicated
in Fig.2. The program autorr{atically determines the ap-
propriate exponents for each corner by first solving La-
place's equation for a sectorial medium. Apart from the
ground plane a vertical symmetry plane was specified in
the program input for this example, causing it to con-
struct the regular part of the fundamental solution by su-
perimposing images of g, and restrict computation to one
half of the structure.

HYBRID WAVE BIE-SYSTEM

This section generalizes the above BIE approach to
full wave analysis. To this end the material in each ho-
mogenous subregion () is described by means of the com-
plex parameters z:=ja)pour and y==d+jwsﬂ'sr. For the
electromagnetic field E,H we assume exp(jwt- yar) beha-
viour. In addition to ¢F an “independent’ domain current
density Se with the same propagation factor is taken into
account in the derivation to prepare for future extensions
of the model to active structures. Restricting ourselfes to
solenoidal fields here and describing the ‘independent’
current density Se by

.S'e rot a7 + rot rot a9
with 7,9:Q—~C , the electromagnetic field is derived from

two scalar potentials y,¢:Q—C in the form

E = zaxgrady - ygrad$ + h%a¢ - za$
and

H = -ygrady + Izzax -yaxgrad ¢ +ay - axgrad § ,
where h%:i= y%-zy and y and ¢ are solutions of Ly=-g3

and L¢ =29, respectively. Expressing the potentials y and
¢ and their normal derivatives by the proper components
of the electromagnetic field the latter two equations are
translated into the coupled system

K[aH1- £GItE1- L GI-LaE] - -QUiv ax 5,1 + GIES, .

KlaE ]+y”—2G[tH] +§ G[c%aH] = -zQlaS,] -+—yf GlzS]
(11,12)

of a magnetic (MFIE) and an electric field integral
equation (EFIE). Interface continuity conditions again are
automatically fulfilled with this formulation. In the speci-
al case of pure TE or TM propagation and zero Se the
decoupled equations

" B
K(aH]-G[tE]= 0 and KIaEl+-GltH]= 0

emerge.



As eqns.(11}) and (12) are of substantially
numerical effort for their
discretization is strongly reduced. As long as no
symmetries are considered, the fundamental
solution for the dynamic problem is given by

slp.g) = K, (inlp-4l).

the same structure,

where K denotes the modified Bessel function of
the second kind and zero order. By separately
evaluating the integrals involving regular and

singular. parts of the fundamental solution further
economization is accomplished. This is due to the
fact that the singular part, requiring most of the
expense in numerical integration is independent of
frequency and propagation constant and so must
be computed only once.
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