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ABSTRACT

A boundary integral formulation for quasistatic, TE,

TM and hybrid wave analysis of open or shielded wave-

guides with arbitrary multiregion crossection is presented.

A special form of boundary integral equation is derived

first to make possible the rmmerical treatment of corner-

ed geometries. Subsequently operator equations including

source terms are given for analysis of arbitrary 2-D

structures. The numerical method is described shortly,

includlng as example the quasist atic analysis of coplanar

waveguide with non-rectangular conductor shape.

INTRODUCTION

A variety of complicated crossections is exhibited by

active and passive MMIC waveguidlng structures which on

principle or by technology are neither planar nor of

rectangular geometry, therefore excluding some standard

methods for their analysis. To deal with arbitrary multi-

region crossections the flexibility of the finite element

method (FEM), the finite difference method (FDM) or the

boundary integral equation method (BIEM) is required.

While the former have been applied to waveguides by

different workers (1), application of the BIEM has only

been reported for quasistatic problems (2) and no BIE

formulation for the analysis of hybrid wave propagation

has yet been given.

With the BIEM (3,4) a partial differential equation

for an unknown function defined over some domain is

transformed into an integral equation for its boundary

values. The principal advantage of thk approach is the

reduction of problem dimensionality by one which directly

translates into reduced matrix size and facilitates data

preparation. As opposed to the domain methods unbounded

regions present no dlf~lculties to the BIEM hence no

artificial shielding is required. For multiregion problems

interface continuity conditions are automatically satisfied

by stating the BIE for each subdomain in terms of those

field components that are continous over interfaces. As

solution of the BIE system the interface values of these

field components are obtained as the primary result.

Integral quantities and field components at interior points

are easily computed from them by one-dimensional inte-

gration. Due to the one-dimensionality of the transformed

problem a very flexible numerical implementation is

possible, including for example automatic generation of

the asymptotically exact edgeterms for metallic and

dielectric corners, such permitting to obtain the precise

fields in the vincinity of corners while further reducing

the number of unknowns that are needed. Curved bounda-

ries do not need polygonal approximation but can be

entered in their exact functional form.

The method has a wide range of applications. For

static analysis anisotropic media can be handled by simply

changing the fundamental solution subroutine, also non-

linear conductivity may be specified. The hybrid wave

formulation allows for regions of finite conductivity so as

to model losses and slow wave effect. We have included

source terms for both the static and the full wave BIE

system thus aiming at future extension of the model to

the analysis of active structures.

BOUNDARY INTEGRAL FORMULATION

This section first introduces a modified irrrpJicit form

of BIE on which the present method is baved. This form

is equally applicable to smooth and cornered boundaries

while the standard form fails in the latter case, due to

loss of uniform convergence of some integral operator.

To start with, consider an open, unbolmded or boun-

ded domain Q c IR2, for the moment assume its boundary

Xl to be smooth and let n denote its outer normal. In Q

a solution is sought for the problem

Lu := Au+h2u ❑ -b (1)

with fr2 E C and u subject to some bour]dary condition

B(K, ngradu) =0 on XI. The space of admissible functions

u is restricted by requiring that u be twice continuously

differentiable in the open domain fl and Holder continous

on its closure il. i.e.

I U(P) - u(g)l ~ M !IP - 9!!Z (2)
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with IM, rsR+ for all p,q Efi, the necessity of the latter

restriction becoming obvious below. For brevity we intro-

duce the symbol

v : M2-C, q * rr(q)grad u(q)

for the normal derivative of u on NJ. Translating the

boundary value problem into a boundary integral formula-

tion employs a fundamental solution

g(P, ” ) : fi \{P} - ~$ (P!9) ‘- t?(P!9)

of eq. (1 ) which for any p Cn it satisfies

L,g = -A(P) $~l/P- qll).

A(p) here denotes the plane angle that opens from p into

Q and $2 is Diracs distribution in illz. The fundamental

solution is not unique. It depends on the parameter h and

in addition may have the symmetries of the problem built

into it, but always can be expressed as sum of its singu-

lar part

go(P,9) := -Mb -9 11) (3)

and a function gl which is defined and continuously diffe-

rentiable on an open domain U > G. Consequently its

normal derivative on ix2

may

k(p, ) : IM2\{p} - C, (p,g) H n(q)gradqg(p, g)

be expressed as sum of

ko(p, q) = b:;;) (4)

and a continous function kl. Application of Greens second

theorem to the functions u and g with respect to the

punctured domain Q\{p} renders the BIE

A(P)u(P) + fk(p,q) U(g) ds(g) - ~g~,q) V(fj ds(g)

da \{p}
(5)

Xl \b}

= ~~g(p,q) b(g) d’g

rl\{p}

in its standard explicit form. This form is well suited to

regions with a smooth boundary Xl where the appearing

boundary integrals converge uniformly. To see this only

the singular parts go, k. of the kernels need considerati-

on. The assumption of a smooth boundary says that for

any two points p,g~ Xl and some C~ R+ the inequality

I(P- 9)n(9)l ~ CIIP- 9112 (6)

holds as q -p. Hence we have

Iko(p,g) u(q)l s c ~~$n(bbr)l) (7)

and the first boundary integral on the left hand side of

(5) is regular in this case. The second integral is weakly

singular but uniform convergence is assured by Lebesgue’s

dominated convergence theorem as

I go(p,q) V(q)l ~ Iln(llp -qll)l Mllp- gll=-’

because of (2). If now the assumption of Ml beeing

smooth is dropped and singular boundary points are ad-

mitted as depicted in Fig.1, obviously inequalities (6) and

(7) no longer hold and uniform convergence of the first

boundary integral in eq. (5) is lost. Discretization of the

BIE by projecting it onto a set of test-functions would

however require that this integral again appeared under

an integral. As both integrals are to be evaluated nume-

rically, we conclude that eq. (5) is not applicable in the

presence of singular boundary points. To overcome this

problem eq. (5) is replaced by

~ko(p,q) (u(q) -u(p)) ds(g) + fkl~,q) u(q) ds(q)

an \{p} xl \~} (8)

- ~ti,q) v(q)ds(q) ❑ ffg(.p,q) b(q) d’q,

ao\{p} O\{p}

the implicit form of the BIE. For smooth boundaries

equations (5) and (8) are equivalent. The implicit form

however does not suffer from loss of uniform convergence

of the boundary integrals in the presence of singular

boundary points. TMs follows from the dominated conver-

gence theorem again, for

/ko(p,q) (U(q) -u(p))l s + A4[lp- qll’

as 9 -p as consequence of inequality (2).

Eq.(8) is the basis of the present method. Before

proceeding to the applications we rewrite it in operator

notation as

I current‘es’bou”dar’‘T=rs)II \ “ith 6 test functions

Figs: A typical domain Q of a general 2-D structure
with non-smooth boundary X2 made up of the
smooth curves l?l...l?~whlch join in singular boundary

points. A local right handed system of unit vectors
(n,t,a) is attached to each boundary point. Basis and
test functions are shown for two boundaries, the

current source and test boundary (see text).
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K[u](p) - G [v](P) = Q[bl(p), (9)

where the definition of the operators should be obvious by

comparison, and shortly indicate how discretization of the

operators is performed. Pairs of curves I’T,r~ E {ri } C Jfl

are selected in succession to serve as test- and source-

boundary respectively (Fig.1 ). Having chosen suitable sets

of test functions {fm}: rT-R and basis functions

{Un},{Vm}: $ ~IR partial discrete operators of the form

can be computed and finally be assembled to the global

matrix equation. An iterative numerical integration sche-

me is used to compute the operators up to a predefine

relative precision. The important questions of how to

select regular and singular basis functions ( splines and

inverse fractional power) for a given structure and how

to regularize the quasisingular integrals can not be de-

scribed in detail here but some information is interspersed

below.

STATIC FIELDS

The static field problem was tackled first to work

out the details of the method and also for its practical

relevance, as many typical transmission line structures

encountered in MMICS have transverse dimensions small

enough to justify the quasistatic approximation. Solving

for the electrostatic potential is a straightforward appli-

cation of eq. (9) with h2 set to zero. Each homogeneous

subregion contributes a BIE

K[rp] + &G[n.D] = $Q[p] (lo)

where p denotes electrostatic potential and n.D the nor-

mal component of electric displacement. The domain

integral operator Q only appears when domain charge

density p is present. As p and rI.D will be known on some

boundaries and unknown on others eq.(10) must be re-

arranged correspondingly. For simplicity we indicate this

here by writing

(K[p]+ ~G[n.Dl) = :QIPI-(KIPI + jG[n+Dl)known.
& un-

known

After computing the partial operators for all combinations

of test and source boundaries in each domain, assembly of

the global operator equation merely requires the block

matrices to be put in their right places and their sign

adjusted according to wether the source boundary normal

points out of or into the current domain. Note that inter-

face continuity conditions are automatically fulfilled by

select ing p and n .D as the boundary value functions to

work with.

As demonstration a coplanar waveguide with non-

rectangular conductor shape as due to underetchlng

(Fig.2a) and electrolytical growth (Fig.2b) respectively is

analyzed. It was found that the technological impact on

conductor shape is by no means negligible in MMIC ap-

plications (Fig.3). Surface charge density and interface

flux (Fig.4) are computed to high precision using only few

basis functions because edgeterms with a!lymptotically

correct order of singularity are included as was indicated

in Flg.2. The program automatically determines the ap-

propriate exponents for each corner by first solving La-

place’s equation for a sectorial medium. Apart from the

ground plane a vertical symmetry plane was specified in

the program input for this example, causinp; it to con-

struct the regular part of the fundamental sollution by su-

perimposing images of gO and restrict computation to one

half of the structure.

HYBRID WAVE BIE-SYSTEM

This section generalizes the above BIE approach to

full wave analysis. To this end the material in each ho-

mogenous subregion L! is described by means of the com-

plex parameters z:= jtiyo P= and y:= u+ jtis s . For the

electromagnetic field E,H we assume exp(j~;-ryaf) beha-

viour, In addition to CJE an ‘independent’ domain current

density Se with the same propagation factor is taken into

account in the derivation to prepare for future extensions

of the model to active structures. Restricting ourselfes to

solenoidal fields here and describing the ‘independent’

current density Se by

s := rot arj + rot rot X3
e

with 7,8: fl ~C , the electromagnetic field is derived from

two scalar potentials x,rJ:fl -C in the form

E = zaxgrad~ - ygrad~+hza~ -zri$

and

II = -ygrad~+ flza~ -yaxgrad~ + an - axgrad$ ,

where frz:= yz-zy and z and ~ are solutions of Lx= -q

and L ~ = zS, respectively. Expressing the potentials x and

~ and their normal derivatives by the proper components

of the electromagnetic field the latter two equations are

translated into the coupled system

K[aZif] -~2G[tJ?]- ~G[~a13] = -Q[div ax $e] + G[tSe],

K[aE ]+~2G[tH]+~ G[&aHl = -z Q[a~l +~G[zrSel

(11,12)

of a magnetic (MFIE) and an electric field integral

equation (EFIE). Interface continuity conditions again are

automatically fulillled with this formulation. In the speci-

al case of pure TE or TM propagation am-l zero Se the

decoupled equations

K[alX1-#2G[tl?]= O and K[aE ] +#~G[tH] ❑ O

emerge.
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As eqns. (11) and (12) are of substantially

the same structure, numerical effort for their

discretization is strongly reduced. As long as no

symmetries are considered, the fundamental

solution for the dynamic problem is given by

&9) ❑ K&(jh 11P-411)$

where K& denotes the modified Bessel function of

the second kind and zero order. By separately

evaluating the integrals involving regular and

singular parts of the fundamental solution further

economization is accomplished. This is due to the

fact that the singular part, requiring most of the

expense in numerical integration is independent of

frequency and propagation constant and so must

be computed only once.
Fig.2: Open coplanar structure with non-rectangular

‘conduc(or sha_pe as due to underetchlng (a) and

(1,

(2

(3)

(4)

——
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Flg.3: Influence of conductor shape on transmission

‘line characterics for the structure shown in Fig.2.

1
.

-gJ

B

A

( -J-2J-J ‘ig4:‘Orpalized‘Urface”chargedensity u/sO on top and side walls

of center and outer conductor for
0 5 10 15 m Za the structure of F]g.2(b) as compu-

boundary coordinate s ted with the static BIE formulation.

Letters refer to the overlay.
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